

FEATURES

- Glass passivated
- High maximum operating temperature
- · Low leakage current
- · Excellent stability
- Guaranteed minimum turn-on time for absorbing forward current transients and oscillations
- Specially designed as rectifier in the auxiliary power supply in e.g. switched mode power supplies
- Available in ammo-pack.
- Also available with preformed leads for easy insertion.

DESCRIPTION

Rugged glass SOD64 package, using a high temperature alloyed construction.

This package is hermetically sealed and fatigue free as coefficients of expansion of all used parts are matched.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RRM}	repetitive peak reverse voltage		_	300	V
V _R	continuous reverse voltage		_	300	V
I _{F(AV)}	average forward current	averaged over any 20 ms period; T _{tp} = 55 °C; lead length = 10 mm; see Fig.2; see also Fig.4	_	2.4	A
		averaged over any 20 ms period; $T_{amb} = 65 ^{\circ}C;$ PCB mounting (Fig.8); see Fig.3; see also Fig.4	_	1.0	A
I _{FRM}	repetitive peak forward current	T _{tp} = 55 °C	_	21	А
		T _{amb} = 65 °C	_	8.5	А
I _{FSM}	non-repetitive peak forward current	t = 10 ms half sine wave; $T_j = T_{j \text{ max}}$ prior to surge; $V_R = V_{RRMmax}$	_	45	A
T _{stg}	storage temperature		-65	+175	°C
Tj	junction temperature		-65	+175	°C

ELECTRICAL CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 2 \text{ A}$; $T_j = T_{j \text{ max}}$; see Fig.5	_	_	1.34	V
		I _F = 2 A; see Fig.5	_	_	2.30	V
I _R	reverse current	V _R = V _{RRMmax} ; see Fig.6	_	_	10	μΑ
		$V_R = V_{RRMmax}$; $T_j = 165 ^{\circ}\text{C}$; see Fig.6	_	_	150	μΑ
t _{fr}	forward recovery time	when switched to I _F = 5 A in 50 ns; see Fig.9	_	_	1.5	μs
t _{on}	turn-on time	when switched from $V_F = 0 \text{ V}$ to $V_F = 3 \text{ V}$; measured between 10% and 90% of $I_{F \text{ max}}$; see Fig.11	400	-	_	ns
t _{rr}	reverse recovery time	when switched from $I_F = 0.5$ A to $I_R = 1$ A; measured at $I_R = 0.25$ A; see Fig.11	_	_	150	ns
C _d	diode capacitance	$f = 1 \text{ MHz}$; $V_R = 0 \text{ V}$; see Fig.7	_	65	_	pF

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	25	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	75	K/W

Note

1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer ≥40 μm, see Fig.8. For more information please refer to the *'General Part of Handbook SC01.'*

GRAPHICAL DATA

 $a = 1.42; \ V_R = V_{RRMmax}; \ \delta = 0.5.$ Switched mode application.

Fig.2 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

 $\begin{aligned} &a=1.42;\ V_R=V_{RRMmax};\ \delta=0.5.\\ &\text{Device mounted as shown in Fig.8.}\\ &\text{Switched mode application.} \end{aligned}$

Fig.3 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage).

Fig.4 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.

 $a = I_{F(RMS)}/I_{F(AV)}; \ V_R = V_{RRMmax}; \ \delta = 0.5.$

Dotted line: $T_j = 175$ °C. Solid line: $T_j = 25$ °C.

Fig.5 Forward current as a function of forward voltage; maximum values.

Fig.6 Reverse current as a function of junction temperature; maximum values.

Fig.7 Diode capacitance as a function of reverse voltage; typical values.

