

BY448

FEATURES

- Glass passivated
- High maximum operating temperature
- Low leakage current
- Excellent stability
- Available in ammo-pack.

APPLICATIONS

- k a AM047
- Damper diode in high frequency horizontal deflection circuits up to 16 kHz.
- Fig.1 Simplified outline (SOD57) and symbol.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

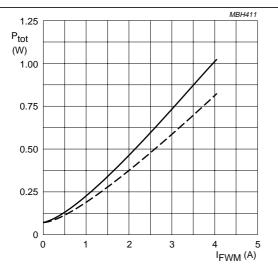
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RSM}	non-repetitive peak reverse voltage		-	1650	V
V _{RRM}	repetitive peak reverse voltage		-	1650	V
V _R	continuous reverse voltage		_	1500	V
I _{FWM}	working peak forward current	T _{amb} = 50 °C; PCB mounting (see Fig 4); see Fig.2	-	4	A
I _{FRM}	repetitive peak forward current		_	8	A
I _{FSM}	non-repetitive peak forward current	t = 10 ms half sinewave; $T_j = T_{j max}$ prior to surge; $V_R = V_{RRMmax}$	-	30	A
T _{stg}	storage temperature		-65	+175	°C
Tj	junction temperature		-65	+150	°C

ELECTRICAL CHARACTERISTICS

 $T_i = 25 \ ^{\circ}C$; unless otherwise specified.

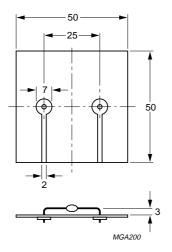
SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
V _F	forward voltage	$I_F = 3 \text{ A}; T_j = T_{j \text{ max}}; \text{ see Fig.3}$	1.45	V
		I _F = 3 A; see Fig.3	1.60	V
I _R	reverse current	$V_R = V_{Rmax}$; $T_j = 150 \ ^\circ C$	150	μA
t _{rr}	reverse recovery time	when switched from $I_F = 0.5$ A to $I_R = 1$ A; measured at $I_R = 0.25$ A; see Fig.6	1	μs
t _{fr}	forward recovery time	when switched to $I_F = 4 \text{ A in } 50 \text{ ns};$ T _j = T _{j max} ; see Fig.7	1	μs

THERMAL CHARACTERISTICS


SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	46	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	100	K/W
		mounted as shown in Fig.5	55	K/W

Note

1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer ≥40 μm, see Fig.4. For more information please refer to the *"General Part of associated Handbook"*.



GRAPHICAL DATA

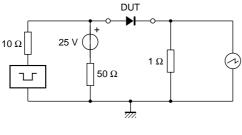
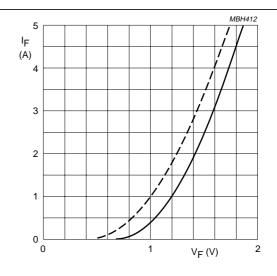

Solid line: basic high-voltage E/W modulator circuit; see Fig.8. Dotted line: basic conventional horizontal deflection circuit; see Fig.9. Curves include power dissipation due to switching losses.

Fig.2 Maximum total power dissipation as a function of the working peak forward current.



Dimensions in mm.

Fig.4 Device mounted on a printed-circuit board.

Input impedance oscilloscope: 1 MΩ, 22 pF; $t_r \le 7$ ns. Source impedance: 50 Ω; $t_r \le 15$ ns.

Dotted line: $T_j = 150 \text{ °C}$. Solid line: $T_j = 25 \text{ °C}$.

Fig.3 Forward current as a function of forward voltage; maximum values.

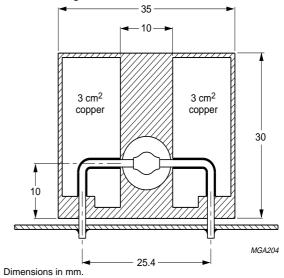


Fig.5 Mounting with additional printed circuit board for heat sink purposes.

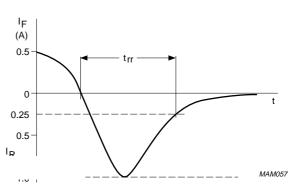


Fig.6 Test circuit and reverse recovery time waveform and definition.

BY448